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Article history: Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors.
Rece?ved 22 July 2013 Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual
Received in revised form risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both
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reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative
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stress has been the focus of many researchers as they have the potential to act as an “integrator” of a
multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the

Keywords: accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with
Biomarker important cellular functions are confined to signalling microdomains in cardiovascular cells and are not
Cardiovascular disease readily available for quantification. A popular approach is the measurement of stable by-products
Glutathionylation modified under conditions of oxidative stress that have entered the circulation. However, these may not
gﬁgﬁgﬁ stress accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally
silent”. Functional significance of the oxidative modifications enhances their validity as a proposed
biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such
as glutathionylation. We review selected biomarkers of oxidative stress that show promise in
cardiovascular medicine, as well as new methodologies for high-throughput measurement in research
and clinical settings. Although associated with disease severity, further studies are required to examine

the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment.
© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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Introduction recognized as a key determinant of the validity of the marker.

The term biomarker has been defined by The National Insti-
tutes of Health as “a characteristic that is objectively measured
and evaluated as an indicator of normal biological processes,
pathogenic processes, or pharmacological responses to a thera-
peutic intervention” [1]. Applications include diagnosis, prognosis
and individualization of therapy in cardiovascular disease (CVD).
Examples of circulating biomarkers that have been incorporated
into clinical practice, and shown to have value in addition to
traditional cardiovascular risk factor analysis, include N-terminal
pro-B-type natriuretic peptide (NT-proBNP) for heart failure [2],
glycated haemoglobin (HbA1c) for glycaemic control in diabetes
[3], high-sensitivity troponin I [4] and high-sensitivity C-reactive
protein (hs-CRP) for cardiovascular risk prediction [5]. Factors that
determine the clinical utility of a biomarker include the ease and
cost of measurement, its performance characteristics (e.g. sensi-
tivity, specificity, etc.) and evidence for guiding management and
improving patient outcome [6].

The most promising biomarkers are the ones that closely
correlate with the pathophysiological process of the disease. The
role of oxidative stress in the pathophysiology of CVD is well
established [7,8]. Reactive oxygen species (ROS) are derived from
many sources including mitochondria, xanthine oxidase, uncoupled
nitric oxide synthases and NADPH oxidase [9]. In addition to
generalized oxidation resulting in cell dysfunction, necrosis or
apoptosis, ROS also induce specific post-translational modifications
that alter the function of important cellular proteins and signalling
pathways in the heart [10-13]. The important role of oxidative
stress in cardiovascular pathophysiology has encouraged quantifi-
cation of ROS as a promising biomarker reflecting the disease
process. However, this has proven to be a complex challenge given
the evanescent nature of ROS. The short half-life of these species
makes them excellent signalling molecules but confounds their
measurement in the circulation of complex biological systems by
standard approaches such as spin-trapping [7]. Instead the focus
has been on measuring stable markers in the circulation that may
reflect systemic oxidative stress. This review will discuss current
biomarkers of oxidative stress focusing on their advantages and
disadvantages in research and clinical setting and future directions
in this field.

Biomarkers of oxidative stress

Biomarkers of oxidative stress can be classified as molecules
that are modified by interactions with ROS in the microenviron-
ment; and molecules of the antioxidant system that change in
response to increased redox stress. DNA, lipids (including phos-
pholipids), proteins and carbohydrates are examples of molecules
that can be modified by excessive ROS in vivo. This is shown
schematically in Fig. 1. Of these modifications, some are known to
have direct effects on function of the molecule (e.g. inhibit enzyme
function), but others merely reflect the degree of oxidative stress
in the local environment. The functional significance or causal role
of the oxidative modification on cell, organ and system function is

Other factors influencing the clinical applicability of a ROS bio-
marker include the ease of obtaining an appropriate biological
specimen; the stability of the biomarker throughout various
storage conditions and specimen preparation steps; and the
specificity, sensitivity and reproducibility of the assay used to
measure the modification [14]. Table 1 summarizes the advantages
and disadvantages of the selected oxidative stress biomarkers
discussed below. Fig. 2 demonstrates the timeline and required
steps for biomarker development for clinical application.

Lipid peroxidation

The important role of free radical oxidation of cellular compo-
nents in CVD has been recognized since the proposal of the
oxidative theory of atherogenesis [15,16]. Lipids are susceptible
targets of oxidation because of their molecular structure abundant
with reactive double bonds [17]. Two of the most well studied
markers of lipid peroxidation are isoprostanes (IsoPs) and mal-
ondialdehyde (MDA). Other lipid oxidation products that have
been explored as biomarkers include lipid hydroperoxides, fluor-
escent products of lipid peroxidation, oxidation resistance assays
and oxysterols.

Isoprostanes

IsoPs are a family of stable, prostaglandin-like compounds gen-
erated from the peroxidation of arachidonic acid, a polyunsaturated
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Fig. 1. Formation pathways of selected biomarkers of oxidative stress. Biomarkers
that have been shown to have prognostic significance in cardiovascular disease are
marked with s GSH=glutathione (reduced), PUFA=polyunsaturated fatty acids,
see text for other abbreviations.
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Advantages and disadvantages of various biomarkers of oxidative stress.
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Biomarker Advantages Disadvantages Comments References
IsoPs Can be detected in various Current methods of No evidence linking this [22,24,25]
samples (serum, urine) and quantification are impractical biomarker to clinical
has been shown to be elevated for large-scale screening (GC/ outcomes yet.
in the presence of a range of MS) or requires further
CV risk factors. validation (immunoassay Kits).
MDA Technically easy to quantify TBARS assay is non-specific Shows promise as a clinical [33,34,39,40]
spectrophotometrically using (can detect aldehydes other biomarker, however does not
the TBARS assay. ELISA kits to than MDA) and sample have a functional impact on
detect MDA also have good preparation can influence the pathophysiology of CVD.
performance. Studies show results
MDA can predict progression
of CAD and carotid
atherosclerosis at 3 years.
Nitrotyrosine Human studies have Circulating levels are not Nitrotyrosine formation on [43,55]
demonstrated association equivalent to tissue levels. particular cardiovascular
with CAD independent of Current detection methods are proteins have direct effect on
traditional risk factors expensive and impractical for function.
scaling up.
S-glutathionylation S-glutathionylation of SERCA, Detection of S-glutationylation Modified Hb currently being [10,13,58,65]

MPO

OxLDL

ROS-induced changes to
gene expression

Serum antioxidant capacity

eNOS and Na*-K* pump
demonstrated as biomarkers
as well as role in pathogenesis.

Commercial assays available.
Strong evidence that MPO
correlates with CVD risk.
Elevated in CAD, increasing
OXLDL correlates with
increasing clinical severity.
Also is predictive of future
CAD in healthy population.
Good reproducibility from
frozen samples.

The expression of several
genes may be measured
simultaneously using
microarray technology,
potentially increasing the
power of this biomarker.
GPX-1 demonstrated to be
inversely proportional to CAD.
Commercial kits available to
measure antioxidant capacity.
Reproducibly quantified
despite frozen sample storage.

prone to methodological
artefact.

Access to tissue
(myocardium, vasculature)
where modification occurs
presents a clinical obstacle.
Influenced by sample storage
and time to analysis.

Reduction in OXLDL by
antioxidant pharmacotherapy
has not been matched by
reduction in CVD severity.

Microarray technology can be
manually and computationally
expensive.

Antioxidant activity in serum
may not reflect that of cellular
microdomains that are
important to the pathogenesis
of CVD.

investigated as biomarker.

MPO is a promising biomarker
for CVD risk prediction.

ELISAs for OXLDL detection
readily available.

It is unclear if expression
profiles of cells in biological
samples reflect that in
cardiovascular tissues.

Clinical relevance of
antioxidant quantification to
CVD risk need further
investigation

[1,69,74-76,97-99]

[80-83]

(87,88]

[90]

fatty acid present in phospholipids of cell membranes [18]. The
generation of IsoPs from arachidonic acid is independent of the
cyclooxygenase enzyme that catalyzes the formation of prostaglan-
dins from arachidonic acid [19]. Sources of free radicals for IsoPs
formation include: (1) mitochondrial electron transport chain (super-
oxide (02" ) and hydroxyl radical (*OH)), (2) P450 enzymes (O, ~
and "OH), (3) lipoxygenase (hydroperoxyl radical (HO,")) and (4)
transition-metal catalyzed formation of free radicals [20]. IsoPs are
subsequently released from the cell membrane into circulation by
phospholipases [21], and can then be quantified in tissues, blood and
urine. F»-IsoPs, so called because they contain F-type prostane rings,
are the most stable of the IsoPs family and show the most potential
as a biomarker. The independence of circulating IsoPs levels of renal
or hepatic function allows them to more directly reflect IsoPs
production and oxidative stress [22].

IsoPs can be measured using gas chromatography-mass spec-
trometry (GC/MS), liquid chromatography-mass spectrometry
(LC/MS), enzyme-linked immunosorbance assays (ELISA) and
radioimmunoassay in plasma and urine samples [23]. Commercial
immunoassay kits for IsoPs have been developed that are cheap
and easy to use but have variable performance and results

correlate poorly with mass spectrometric techniques [24], which
are is still regarded as the gold standard for IsoP quantification
[22]. Ex vivo stability is an important consideration when applying
a biomarker to epidemiological studies. A small study revealed
that the concentrations of F»-IsoPs in human plasma measured by
GC/MS at 0 and 24 h ex vivo were similar, but significant ex vivo
artefactual generation of F»-IsoPs occurred in plasma stored on ice
for 36 h [25]. This is presumably secondary to on-going oxidation
of lipids in plasma sample during prolonged storage and suggests
that the utility of plasma F,-IsoPs is limited by time to analysis.
No study of stability of urinary F,-IsoPs has been published to our
knowledge.

Levels of IsoPs in plasma and urine samples have been shown
to correlate with in vivo oxidative stress in a number of animal and
human studies [20,26]. IsoPs are elevated in association with risk
factors such as cigarette smoking, hypercholesterolaemia, diabetes
mellitus, obesity, and hyperhomocysteinemia [22], as well as
myocardial ischaemia/reperfusion [27]. Elevated F,-IsoPs occur-
ring in rhabdomyolysis as a result of redox cycling between ferric
and ferryl forms of myoglobin, plays a causal role in renal
vasoconstriction and associated renal failure [28], F,-IsoP levels
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Fig. 2. Schematic timeline of required steps in biomarker development, from discovery in the Laboratory to clinical application after validation in large scale clinical trials.
Although many ROS biomarkers have reached clinical trials level, only few are regularly applied to patients in clinical practice.

are increased in human atherosclerotic lesions compared with
normal vascular tissue [29], and may participate in the actual
pathogenesis of atherosclerosis through effects on vasoconstric-
tion, platelet aggregation, and proliferation of vascular smooth
muscle cells (VSMCs) [19,26]. Clinical trials attempting to decrease
F,-IsoP production in humans with antioxidant therapy, such as
vitamin C and/or E supplementation, have generated mixed results
[30]. It is also not known if reduction of IsoP levels correlates with
improvement in cardiovascular risk. Further clinical studies are
required to determine if IsoPs may be useful in prognostication in
CVD processes or individualization of treatment strategies.

Malondialdehyde

MDA is generated in vivo via peroxidation of polyunsaturated
fatty acids. MDA interacts with proteins and is itself potentially
atherogenic. MDA's reaction with lysine residues generates lysine—
lysine cross-links [31] which have been identified in apolipopro-
tein B (apoB) fractions of oxidized low density lipoprotein (OXLDL),
and have been postulated to impair the interaction between
OxLDL and macrophages and thereby to promote atherosclerosis
[32].

MDA is typically quantified from plasma samples with the most
popular method being a colorimetric assay based on the reaction
between MDA and thiobarbituric acid (TBA). However, although
suitable for high throughput analysis, this TBA reacting substances
(TBARS) assay lacks specificity for MDA, with aldehydes other than
MDA reacting with TBA to produce compounds that absorb in the
same range as MDA [33]. Several ELISA kits to detect MDA are also
commercially available. These antibody-based assays are typically
validated against measurement of MDA by high-performance
liquid chromatography (HPLC) and demonstrate good performance
with improved specificity [34].

The TBARS assay has been applied as an indicator of oxidative
stress in a number of cardiovascular disease models. In rats, TBARS
concentrations are elevated in the plasma of streptozotocin-
induced diabetic models [35-37]. Plasma TBARS concentration in
these experimental models can be normalized through supple-
mentation with various antioxidants including «-lipoic acid and
aminoguanidine [36,37]. TBARS were found to be elevated in the
serum of cigarette smokers [38]. A study of TBARS in 634 patients
with documented coronary artery disease found that serum levels

of TBARS could predict major cardiovascular events and the need
for a major vascular procedure in a 3-year follow-up period
independently of traditional risk factors and inflammatory mar-
kers [39]. Moreover, elevated TBARS levels predicted carotid
atherosclerotic plaque progression over 3 years as assessed by
carotid wall thickness on ultrasound [40]. However, a small cross-
sectional study revealed no significant association between ele-
vated TBARS and the presence of CVD after correcting for blood
glucose levels [41]. Animal and human studies therefore support a
potential role of lipid oxidation in predicting the progression of
CVD and response to therapies.

Oxidative protein modifications
Nitrotyrosine

Protein tyrosine nitration is mediated by reactive nitrogen species
such as peroxynitrite (ONOO~) and nitrogen dioxide (NO,), and
results in a nitro group adduct on susceptible tyrosine residues [42].
Myeloperoxidase (MPO), with its transition metal centre, can react
with ONOO™ to yield oxo-metal complexes and NO, thus facilitating
the nitration reaction [43]. Although the precise intermediates and
mechanism for nitration in vivo have been a matter of controversy,
measures reflective of tyrosine nitration have been used as indicators
of oxidative stress. Free nitrotyrosine (3-NO,-Tyr) represents the
turnover of nitrated proteins and can be measured by tandem mass
spectrometry (MS/MS) coupled with GC or HPLC as the current gold
standard technique [44]. Further studies are required to establish
a normal basal range of circulating free 3-NO,-Tyr in healthy
individuals (proposed by Pelluffo and Radi to be 1 nM) [43]. Alter-
natively, protein extracts from biological samples can be completely
hydrolyzed before quantification of nitrotyrosines by chromatogra-
phy. Results are expressed as moles of 3-NO,-Tyr/Tyr. Potential
downside of this is that the presence of nitrite in the sample and
the acid precipitation of proteins or acid hydrolysis can influence
the nitration of tyrosine residues in the sample [45]. Other ways of
quantifying protein nitration are immunocytochemical and immu-
nohistochemical assays based on either monoclonal or polyclonal
anti 3-NO,-Tyr antibodies. Antibodies against specific nitrated pro-
teins have recently been developed and tested [46].
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Nitrotyrosine formation on enzymes such as sarcoplasmic
reticulum Ca?*-ATPase (SERCA2a) [47,48], manganese superoxide
dismutase (SOD) [49], prostacyclin synthase [50], tyrosine hydro-
xylase [51] and aldolase A [52] inhibits their normal activity. In
contrast, in the case of fibrinogen, nitrotyrosine is associated with
increased activity and acceleration of clot formation [53]. Nitration
of tyrosine residues in enzymes may affect their function through
steric or allosteric hindrance, or gain-of-function effect as with
nitrated fibrinogen (for a comprehensive review of nitration
products refer to Peluffo and Radi [43]).

Nitrotyrosine formation has been observed in vascular and myo-
cardial tissue in both healthy individuals and those with CVD [54]. In a
case control study of 100 patients with established coronary artery
disease (CAD), plasma protein-bound nitrotyrosine levels were found
to be significantly higher among patients with CAD even after
adjustment for traditional risk factors for CVD and CRP [55]. Nitrotyr-
osine formation on SERCA2a is significantly higher in cardiac tissue of
humans with dilated cardiomyopathy compared with healthy controls
[47]. Furthermore, nitration of proteins and lipoproteins may also play
a direct pathophysiological role. For example, nitrated LDL is taken up
by macrophages leading to foam cell formation [56].

Despite the pathophysiological role of nitration, there are
several challenges in applying nitrotyrosine as a CVD biomarker.
In the case of atherosclerosis, circulating nitrated proteins and
lipoproteins may not accurately reflect the degree of nitration of
key proteins in the vessel wall or tissue of interest [57]. Further-
more, current methods of detecting nitrotyrosine are relatively
expensive and impractical for scaling up for high-throughput
screening and analysis. Further studies are needed to address
these issues before nitrotyrosine can be adopted as an oxidative
stress biomarker ready for the clinic.

S-glutathionylation

S-Glutathionylation, the formation of a disulphide bridge between
a reactive cysteine residue and the abundant cellular tripeptide
glutathione, is a stable yet reversible reaction that confers a 305 Da
negatively charged group. This oxidative modification can exert effects
on protein tertiary structure and function in a manner similar to
phosphorylation [10,13] and has been shown to mediate redox
regulation of a number of key cellular proteins, including endothelial
nitric oxide synthase (eNOS) [58], ryanodine receptor [59], SERCA [13]
and Na* — K™ pump [10,60]. The impact of glutathionylation of each
of these membrane proteins has been reported in either the myocar-
dium and/or vascular tissue - with altered function resulting in
alterations in intracellular Na* and Ca?* handling, and other key
signalling pathways particularly relevant to cardiovascular function
[10,61]. However, the direct usefulness of measuring glutathionyla-
tion of these proteins as biomarkers is hampered by difficulty in
accessing the tissue in which these functionally relevant modifica-
tions occur. Researchers have therefore investigated the potential of
S-glutathionylation of proteins in circulating cells (e.g. erythrocytes).
S-glutathionylation of haemoglobin has been proposed as a marker of
oxidative stress [62], and is increased in patients with diabetes,
hyperlipidaemia and renal failure [63,64]. In contrast to glutathionyla-
tion of eNOS, SERCA and the Na*-K* pump (as illustrated in Fig. 3),
the functional significance of glutathionylation of haemoglobin is not
well established. The argument for the use of S-glutathionylation as a
biomarker of oxidative stress would be substantially strengthened by
finding a susceptible candidate protein whose function is modified in
the circulating cells in parallel with modification of the same molecule
in the vasculature or myocardium.

An additional challenge facing the use of glutathionyated
proteins as biomarkers of oxidative stress is that measurement
of glutathionylated proteins is prone to methodological artefact
and requires careful specimen handling and preparation [65].

3Na
" w =
/GSS N subunit inhibits pump activity :

e <

Fig. 3. Schematic illustration illustrating the functional effect of glutathionylation
of key cardiovascular proteins eNOS [58], SERCA [13], and Na*-K™ pump [10,60].

S-glutathionylation of susceptible proteins is commonly measured
using low-resolution techniques such as Western Blotting under
non-reducing conditions [14]. More efficient approaches include
the use of MS techniques, or, potentially, ELISA with monoclonal
anti-glutathione antibody (as has been developed for actin [66]
and recently established by our Group for p; subunit of the
Na*-K* pump [67]). Measurement of S-glutathionylation of target
proteins with important functional consequences is a promising
biomarker for CVD processes and merits further exploration of
accurate quantification methods and predictive value for prognos-
tication in appropriately designed prospective studies.

Myeloperoxidase

MPO is a haeme enzyme that is abundant in granules of human
inflammatory cells such as activated neutrophils, macrophages
and monocytes. MPO acts as a master enzyme in the generation of
a range of ROS by catalyzing the conversion of hydrogen peroxide
(H20;) to species including *OH, ONOO~, hypochlorous acid
(HOCl), and NO,. MPO-derived ROS can then modify lipids,
lipoproteins and proteins.

MPO function can be measured by peroxidase activity assays such
as the formation of guaiacol oxidation products that can be easily
measured spectrophotometrically [68]. MPO mass/concentration can
be quantified in biological samples using a range of commercially-
available ELISA plates. Sample collection, handling and processing
affects the quantification of MPO. For example, heparin in the patient
or the collection tube could alter measurements [69].

MPO plays an essential role in host immune defences because
of its unique ability to generate HOCI, which has potent antimi-
crobial activity. Since its discovery in 1994, many studies have also
implicated MPO in the pathogenesis of atherosclerosis, showing
that it is enriched within atheromatous plaques [70]. Inflamma-
tory cells recruited into the vascular wall release MPO-derived ROS
that can in turn promote endothelial dysfunction by reducing the
bioavailability of nitric oxide [71], generate atherogenic OXLDL
[72], and modify high density lipoprotein (HDL), impairing its
function in cholesterol efflux [73]. Elevated circulating MPO levels
have been found to be associated with the presence of CAD [1].
In prospective studies, high MPO levels were able to predict
increased risk of developing CAD in healthy individuals [74];
cardiovascular events in patients presenting to emergency with
chest pain [75]; and increased risk of myocardial infarction and
death in patients with acute coronary syndrome [76]. The results
of these large, prospective studies, as well as the ready availability
of commercial assays, make MPO levels one of the most promising
biomarkers of oxidative stress for clinical cardiologists [77].
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Oxidized low-density lipoprotein and oxidized phospholipids

The oxidation and glycation of LDL and phospholipids plays a
central role in the pathogenesis of atherosclerosis, with the
adducts being both proatherogenic and proinflammatory [78].
The oxidation of LDL can occur non-enzymatically or can be
catalyzed by enzymes such as 12/15-lipoxygenase. OXLDL forma-
tion occurs primarily within vascular walls where it is taken up by
macrophages via scavenger receptor pathways to form foam cells.
Accumulation of OxLDL within the vascular walls also stimulates
the overlying endothelial cells to produce proinflammatory cyto-
kines including adhesion molecules such as intercellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1)
and endothelial selectin (E-selectin) [79].

Original studies of OXLDL depended on detection of circulating
plasma autoantibodies against various oxidation-specific epitopes
of OXLDL. OxLDL is now more frequently detected using specific
monoclonal antibodies that directly recognize unique oxidation-
specific epitopes. There are currently 3 plasma OxLDL ELISAs
available for research (and not clinical) purposes (reviewed by
Tsimikas [78]). The OxLDL-E06 ELISA assay quantifies oxidized
phospholipids on apoB-100 molecules. The LDL-DLH3 acts in
reverse to the OXLDL-EO06 ELISA assay by quantifying apoB-100
on oxidized phospholipid molecules, but uses different monoclo-
nal antibodies for detection. The OXLDL-4E6 sandwich ELISA assay
detects MDA-LDL and copper oxidized-LDL epitopes, and is com-
mercially available for experimental use. The stability of OXLDL in
storage at —80° and the fact that it can be reproducibly quantified
in stored samples using ELISA are technical advantages that enable
its application for screening large populations [80].

OxLDL levels are higher in patients with CVD [81], and increasing
OXLDL levels correlate with increasing severity of disease (e.g. stable
angina vs. unstable angina vs. myocardial infarction) [82]. OXLDL levels
also appear to be predictive of future CAD in apparently healthy men
[83]. However, lowering OXLDL with antioxidant therapies has not
been shown to decrease rates of cardiovascular events. A study of 353
healthy subjects revealed that vitamin E supplementation decreased
circulating oxLDL but did not slow down the progression of carotid
artery intima-media thickness over a 3-year period [84]. Thus,
although promising, further studies of the clinical utility of this
biomarker are required.

One of the mechanisms of protection by high-density lipopro-
tein (HDL) against the atherosclerotic process is by decreasing
lipoprotein oxidation and generation of OXLDL./ A major contribu-
tor to this antioxidant protective effect is via the HDL-associated
paraoxanase (PON) which has peroxidase-like activity [85]. The
failure of niacin to reduce the incidence of vascular events in the
Heart Protection Study 2 despite achieving significant increases in
HDL levels [86] may, at least in part, be explained by a lack of
“functionality” of the HDL in regard to both its cholesterol efflux,
as well as antioxidant properties (Khera A, et al. JACC, 2013; 61
(10), E1390). Novel efficacious treatments therefore need to focus
on targeting enhancement of the cholesterol efflux and antiox-
idant function of the HDL rather than simply increasing the levels.

ROS-induced changes in gene expression

ROS levels have been shown to influence the expression of key
genes involved in regulating cellular and systemic oxidative stress.
A prime example is Nuclear factor (erythroid-derived 2)-like 2
(Nrf-2), a transcription factor that is upregulated in response to
oxidative stress and drives the increased expression of numerous
cellular antioxidant enzymes [87]. Additional examples include
peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC-1a) [88] and the thioredoxin family as reviewed by

Lee and colleagues [89]. It has been proposed that profiling the
expression of these ROS-sensitive genes using microarray technol-
ogy may be a valuable tool, particularly relevant to assessing
cardiovascular redox status. This approach remains to be explored.
Low level of expression of these genes may reflect a low level of
oxidative stress in the relevant system or individual variation in
response and may result in a higher level of oxidative cellular
damage. Whether gene expression profiling of cells in commonly
collected biological samples (e.g. blood cells) accurately reflects
the gene expression in cardiovascular tissue has yet to be resolved,
and this presents a challenge for clinical applicability of the ROS-
responsive genes as biomarkers.

Measuring the net antioxidant capacity of the serum

Activity of antioxidant enzymes such as catalase, glutathione
peroxidase 1 (GPX-1) and SOD have been quantified in plasma as
measures of antioxidant capabilities. In a prospective study of
patients with suspected coronary artery disease, erythrocyte GPX-
1 and not SOD activity was inversely associated with incidence of
cardiovascular events after adjusting for cardiovascular risk factors
[90]. From a technical perspective, the enzyme activities of the
GPX-1 and SOD remain stable even when the erythrocytes of the
samples were haemolysed and stored frozen [90]. The commercial
availability of antioxidant enzyme assay kits allows this potential
biomarker to be evaluated in a large-scale high-throughput
screening.

Future directions

Significant progress has been made in primary and secondary
prevention of cardiovascular adverse events, most prominently in
atherosclerotic-related diseases and heart failure syndromes.
Optimization of such therapies at the level of individual patients
is however the “holy grail” in clinical cardiology. The burden of
atherosclerotic disease, for example, in one individual is the
culmination of years of ongoing insults; and successful treatment
is that which has the biggest effect in halting the ongoing
pathophysiology, rather than reversing the previously laid down
atheroma, and ideally in stabilizing the plaque and reducing the
“soft plaque” component. Quantification of both disease load and
best treatment response is thus very challenging. The JUPITER trial
supported the clinical utility of assessing inflammatory status in
guiding intervention to limit cardiovascular events [91]. However,
as ROS lie downstream from the inflammatory driver, as well as
other non-inflammatory mediators of cardiovascular disease, an
effective biomarker of ROS may have even greater potential.

Effective pharmacotherapies with prognostic significance in
atherosclerosis and heart failure (as well as other conditions such
as diabetes and hypertension that predispose humans to CVD)
exert at least some of their clinical efficacy by reducing oxidative
stress and its consequences [10,11,92]. Since increased redox stress
is a major paradigm in pathophysiology of these disease states, the
utility of oxidative stress biomarkers in prognostication and gui-
dance of individualized treatment is driven by their potential to act
as an “integrator”, reflecting the total impact of the many patho-
physiological processes (Fig. 4). A reduction in pathophysiologically-
relevant oxidative biomarkers with a particular combination of
pharmacological therapies (e.g. angiotensin converting enzyme
inhibitors, p-blockers and statins) may provide valuable insight
both into the efficacy of the treatment and guidance to selection of
the most effective drugs/dose regimens for an individual patient
(Fig. 5), particular in those that do not tolerate a combination
“cocktail” of these proven medications. However, as ROS also play a
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Fig. 4. Schematic illustration of ROS as a common mediator of cardiovascular
disease, making ROS-based biomarkers excellent “integrators” for total cardiovas-
cular risk. The demonstrated effects of potent pharmacotherapies (e.g. ARB,
angiotensin receptor blockers [100,101]; statins, HMG-CoA reductase inhibitors
[102]; and B-blockers, p adrenergic receptor blockers [92]) on markers of oxidative
stress suggest that biomarkers of ROS may be an early measure of the success of
pharmacotherapy in a particular patient, and thus be a useful therapeutic guide in
patients who are unable to tolerate a “cocktail” of agents.
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Fig. 5. Schematic illustration of the potential application of ROS biomarker for early
assessment of treatment efficacy, particularly useful for patients intolerant of combi-
nation therapies.

physiological role in signalling, the relationship between a decrease
in ROS biomarker and the response to treatment is not simple. The
critical role of ROS in cellular and vascular homoeostasis under
baseline conditions may partially explain the apparent paradox of
vitamin E reducing markers of ROS, but not improving the rate of
plaque progression [84]. The complex effects of ROS in physiology
and pathophysiology highlight the importance of identifying the
biomarker that has maximum specificity for pathophysiological
effects in the relevant compartments for it to be useful for
individualization of treatment strategies.

In addition to a potential utility as a guide for administration of
well-established pharmacotherapies, if a biomarker of oxidative stress
is shown to be of pathophysiological relevance, it may also be useful in
research aimed at identifying novel treatments with antioxidant
properties that can alter the disease process in a prognostically-
important manner. Despite promising results in experimental and
small clinical studies, large clinical trials of antioxidants have failed to

significantly improve cardiovascular outcomes in a wide-range of
clinical conditions [93-95]. This may result from difficulties in targeted
delivery of antioxidant therapy to the key cellular microdomains [96].
One such important domain is the caveolae - home to many redox-
regulated enzymes critical for cell function (including eNOS and Na™* -
K* pump). If a biomarker was proven not only to be a marker of
oxidative stress but also to reflect redox modifications involved in cell
signalling and functional alteration of key cellular proteins, it may be
useful in identification of novel effective treatments.

Conclusion

As oxidative stress is a unifying feature of almost all of the
cardiovascular risk factors known to drive the atherosclerotic process,
as well as a factor that is increased in response to neurohormonal
abnormalities in heart failure and in cardiac ischaemia, a biomarker
that reflects oxidative stress may be criticized for its lack of
specificity. However, the lack of specificity may reflect the unique
ability of biomarkers of oxidative stress to integrate these risk factors
and evolving CVD processes and hence be of relevance to prognos-
tication. With technical advances in quantification of biomarkers of
oxidative stress and validation in prospective clinical studies of their
prognostic significance there is the potential for these to be inte-
grated into current management schemes of cardiovascular disease.
Novel biomarkers in circulation that reflect pathophysiologically
relevant oxidative signalling cascades within critical cellular micro-
domains in cardiovascular system have the potential to supersede
the currently available biomarkers. However, for this to occur, both
the redox biology community and clinical researchers need to team
up to design studies that go beyond just validating the association of
a marker with severity of disease. The focus needs to include
assessment of the prognostic ability of the marker over standard
clinical measures, and the potential utility of the biomarker to tailor
treatment for the individual patient and improve outcomes.
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